Courtesy: project management certification
Complexity and its nature play an important role in the area of project management. Despite having a number of debates on this subject matter, studies suggest a lack of definition and reasonable understanding of complexity in relation to the management of complex projects.
Project complexity is the property of a project which makes it difficult to understand, foresee, and keep under control its overall behavior, even when given reasonably complete information about the project system.
The identification of complex projects is specifically important to multi-project engineering environments.
As it is considered that project complexity and project performance are closely related, it is important to define and measure the complexity of the project for project management to be effective.
Complexity can be:
- Structural complexity (also known as detail complexity, or complicatedness), i.e. consisting of many varied interrelated parts. It is typically expressed in terms of size, variety, and interdependence of project components, and described by technological and organizational factors.
- Dynamic complexity refers to phenomena, characteristics, and manifestations such as ambiguity, uncertainty, propagation, emergence, and chaos.
Based on the Cynefin framework, complex projects can be classified as:
Simple, complicated, complex, and really complex projects – based on the Cynefin framework.
- Simple (or clear, obvious, known) projects, systems, or contexts. These are characterized by known knowns, stability, and clear cause-and-effect relationships. They can be solved with standard operating procedures and best practices.
- Complicated: characterized by known unknowns. A complicated system is the sum of its parts. In principle, it can be deconstructed into smaller simpler components. While difficult, complicated problems are theoretically solvable with additional resources, specialized expertise, analytical, reductionist, simplification, decomposition techniques, scenario planning, and following good practices.
- Complex are characterized by unknown unknowns, and emergence. Patterns could be uncovered, but they are not obvious. A complex system can be described by Euclid’s statement that the whole is more than the sum of its parts.
- Really complex projects, a.k.a. very complex, or chaotic: characterized by unknowables. No patterns are discernible in really complex projects. Causes and effects are unclear even in retrospect. Paraphrasing Aristotle, a really complex system is different from the sum of its parts.
By applying the discovery in measuring work complexity described in Requisite Organization and Stratified Systems Theory, Dr. Elliott Jaques classifies projects and project work (stages, tasks) into basic 7 levels of project complexity based on such criteria as time-span of discretion and complexity of a project’s output:
- Level 1 Project – improve the direct output of an activity (quantity, quality, time) within a business process with a targeted completion time up to 3 months.
- Level 2 Project – develop and improve compliance to a business process with a targeted completion time of 3 months to 1 year.
- Level 3 Project – develop, change, and improve a business process with a targeted completion time of 1 to 2 years.
- Level 4 Project – develop, change, and improve a functional system with a targeted completion time of 2 to 5 years.
- Level 5 Project – develop, change, and improve a group of functional systems/business functions with a targeted completion time of 5 to 10 years.
- Level 6 Project – develop, change, and improve a whole single value chain of a company with targeted completion time from 10 to 20 years.
- Level 7 Project – develop, change, and improve multiple value chains of a company with target completion time from 20 to 50 years.
Benefits from measuring Project Complexity is to improve project people feasibility by
- Match the level of a project’s complexity with effective targeted completion time of a project
- Match the level of a project’s complexity with the respective capability level of the project manager
- Match the level of a project task’s complexity with the respective capability of the project members
- Positive, appropriate (requisite), and negative complexity
- The Positive, Appropriate and Negative complexity model proposed by Stefan Morcov
- Similarly with the Law of requisite variety and The law of requisite complexity, project complexity is sometimes required in order for the project to reach its objectives, and sometimes it has beneficial outcomes. Based on the effects of complexity, Stefan Morcov proposed its classification as Positive, Appropriate, or Negative.
- Positive complexity is the complexity that adds value to the project, and whose contribution to project success outweighs the associated negative consequences.
- Appropriate (or requisite) complexity is the complexity that is needed for the project to reach its objectives, or whose contribution to project success balances the negative effects, or the cost of mitigation outweighs negative manifestations.
- Negative complexity is the complexity that hinders project success.
- A project manager is a professional in the field of project management. Project managers are in charge of the people in a project. People are the key to any successful project. Without the correct people in the right place and at the right time a project cannot be successful. Project managers can have the responsibility of the planning, execution, controlling, and closing of any project typically relating to the construction industry, engineering, architecture, computing, and telecommunications. Many other fields of production engineering, design engineering, and heavy industrial have project managers.
- A project manager needs to understand the order of execution of a project to schedule the project correctly as well as the time necessary to accomplish each individual task within the project. A project manager is the person accountable for accomplishing the stated project objectives on behalf of the client. Project Managers tend to have multiple years’ experience in their field. A project manager is required to know the project in and out while supervising the workers along with the project. Typically in most construction, engineering, architecture, and industrial projects, a project manager has another manager working alongside of them who is typically responsible for the execution of task on a daily basis. This position in some cases is known as a superintendent. A superintendent and project manager work hand in hand in completing daily project task. Key project management responsibilities include creating clear and attainable project objectives, building the project requirements, and managing the triple constraint (now including more constraints and calling it competing constraints) for projects, which is cost, time, quality and scope for the first three but about three additional ones in current project management. A typical project is composed of a team of workers who work under the project manager to complete the assignment within the time and budget targets. A project manager normally reports directly to someone of higher stature on the completion and success of the project.
- A project manager is often a client representative and has to determine and implement the exact needs of the client, based on knowledge of the firm they are representing. The ability to adapt to the various internal procedures of the contracting party, and to form close links with the nominated representatives, is essential in ensuring that the key issues of cost, time, quality and above all, client satisfaction, can be realized.
- A complete project manager, a term first coined by Dr. Robert J. Graham in his simulation, has been expanded upon by Randall L. Englund and Alfonso Bucero. They describe a complete project manager as a person who embraces multiple disciplines, such as leadership, influence, negotiations, politics, change and conflict management, and humor. These are all “soft” people skills that enable project leaders to be more effective and achieve optimized, consistent results.
- Multilevel success framework and criteria – project success vs. project performance
- There is a tendency to confuse the project success with project management success. They are two different things. “Project success” has 2 perspectives:
- the perspective of the process, i.e. delivering efficient outputs; typically called project management performance or project efficiency.
- the perspective of the result, i.e. delivering beneficial outcomes; typically called project performance (sometimes just project success).
- Project management success criteria are different from project success criteria. The project management is said to be successful if the given project is completed within the agreed upon time, met the agreed upon scope and within the agreed upon budget. Subsequent to the triple constraints, multiple constraints have been considered to ensure project success. However, the triple or multiple constraints indicate only the efficiency measures of the project, which are indeed the project management success criteria during the project lifecycle.
- The priori criteria leave out the more important after-completion results of the project which comprise four levels i.e. the output (product) success, outcome (benefits) success and impact (strategic) success during the product lifecycle. These posterior success criteria indicate the effectiveness measures of the project product, service or result, after the project completion and handover. This overarching multilevel success framework of projects, programs and portfolios has been developed by Paul Bannerman in 2008. In other words, a project is said to be successful, when it succeeds in achieving the expected business case which needs to be clearly identified and defined during the project inception and selection before starting the development phase. This multilevel success framework conforms to the theory of project as a transformation depicted as the input-process / activity-output-outcome-impact in order to generate whatever value intended. Emanuel Camilleri in 2011 classifies all the critical success and failure factors into groups and matches each of them with the multilevel success criteria in order to deliver business value.
- The United States Department of Defense states; “Cost, Schedule, Performance, and Risk” are the four elements through which Department of Defense acquisition professionals make trade-offs and track program status. There are also international standards. Risk management applies proactive identification (see tools) of future problems and understanding of their consequences allowing predictive decisions about projects. ERM system plays a role in overall risk management.
- Work breakdown structure and other breakdown structures
- Main articles: Work breakdown structure and Scope (project management)
- The work breakdown structure (WBS) is a tree structure that shows a subdivision of the activities required to achieve an objective – for example a portfolio, program, project, and contract. The WBS may be hardware-, product-, service-, or process-oriented (see an example in a NASA reporting structure (2001)). Beside WBS for project scope management, there are organizational breakdown structure (chart), cost breakdown structure and risk breakdown structure.
- A WBS can be developed by starting with the end objective and successively subdividing it into manageable components in terms of size, duration, and responsibility (e.g., systems, subsystems, components, tasks, sub-tasks, and work packages), which include all steps necessary to achieve the objective.
- The work breakdown structure provides a common framework for the natural development of the overall planning and control of a contract and is the basis for dividing work into definable increments from which the statement of work can be developed and technical, schedule, cost, and labor hour reporting can be established. The work breakdown structure can be displayed in two forms, as a table with subdivision of tasks or as an organizational chart whose lowest nodes are referred to as “work packages”.
- It is an essential element in assessing the quality of a plan, and an initial element used during the planning of the project. For example, a WBS is used when the project is scheduled, so that the use of work packages can be recorded and tracked.
- Similarly to Work Breakdown Structure WBS, other decomposition techniques and tools are: Organization Breakdown Structure OBS, Product Breakdown Structure PBS, Cost Breakdown Structure CBS, Risk Breakdown Structure RBS, Resource Breakdown Structure ResBS.
- Some projects, either identical or different, can be managed as program management. Programs are collections of projects that support a common objective and set of goals. While individual projects have clearly defined and specific scope and timeline, a program’s objectives and duration are defined with a lower level of granularity.
- Besides programs and portfolios, additional structures that combine their different characteristics are: project networks, mega-projects, or mega-programs.
- A project network is a temporary project formed of several different distinct evolving phases, crossing organizational lines. Mega-projects and mega-programs are defined as exceptional in terms of size, cost, public and political attention, and competencies required.
- Project portfolio management
- Main article: Project portfolio management
- An increasing number of organizations are using what is referred to as project portfolio management (PPM) as a means of selecting the right projects and then using project management techniques as the means for delivering the outcomes in the form of benefits to the performing public, private or not-for-profit organization.
- Portfolios are collections of similar projects. Portfolio management supports efficiencies of scale, increasing success rates, and reducing project risks, by applying similar standardized techniques to all projects in the portfolio, by a group of project management professionals sharing common tools and knowledge. Organizations often create Project Management Offices as an organizational structure to support project portfolio management in a structured way. Thus, PPM is usually performed by a dedicated team of managers organized within an Enterprise Project Management Office (PMO), usually based within the organization, and headed by a PMO director or Chief Project Officer. In cases where strategic initiatives of an organization form the bulk of the PPM, the head of the PPM is sometimes titled as the chief initiative officer.