Lean six sigma certification

Courtesy: Lean six sigma certification

Six Sigma projects follow two project methodologies, inspired by W. Edwards Deming’s Plan–Do–Study–Act Cycle, each with five phases.

  • DMAIC (“duh-may-ick”, /də.ˈmeɪ.ɪk/) is used for projects aimed at improving an existing business process
  • DMADV (“duh-mad-vee”, /də.ˈmæd.vi/) is used for projects aimed at creating new product or process designs

DMAIC

DMAIC’s five steps

The DMAIC project methodology has five phases:

  • Define the system, the voice of the customer and their requirements, and the project goals, specifically.
  • Measure key aspects of the current process and collect relevant data; calculate the “as-is” process capability
  • Analyze the data to investigate and verify cause and effect. Determine what the relationships are, and attempt to ensure that all factors have been considered. Seek out the root cause of the defect under investigation.
  • Improve or optimize the current process based upon data analysis using techniques such as design of experiments, poka yoke or mistake proofing, and standard work to create a new, future state process. Set up pilot runs to establish process capability.
  • Control the future state process to ensure that any deviations from the target are corrected before they result in defects. Implement control systems such as statistical process control, production boards, visual workplaces, and continuously monitor the process. This process is repeated until the desired quality level is obtained.

Some organizations add a Recognize step at the beginning, which is to recognize the right problem to work on, thus yielding an RDMAIC methodology.

Also known as DFSS (“Design For Six Sigma”), the DMADV methodology’s five phases are:

  • Define design goals that are consistent with customer demands and the enterprise strategy.
  • Measure and identify CTQs (characteristics that are Critical TQuality), measure product capabilities, production process capability, and measure risks.
  • Analyze to develop and design alternatives
  • Design an improved alternative, best suited per analysis in the previous step
  • Verify the design, set up pilot runs, implement the production process and hand it over to the process owner(s).

Professionalization

One key innovation of Six Sigma involves professionalizing quality management. Prior to Six Sigma, quality management was largely relegated to the production floor and to statisticians in a separate quality department. Formal Six Sigma programs adopt an elite ranking terminology similar to martial arts systems like judo to define a hierarchy (and career path) that spans business functions and levels.

Six Sigma identifies several roles for successful implementation:

  • Executive Leadership includes the CEO and other members of top management. They are responsible for setting up a vision for Six Sigma implementation. They also empower other stakeholders with the freedom and resources to transcend departmental barriers and overcome resistance to change.[13]
  • Champions take responsibility for Six Sigma implementation across the organization. The Executive Leadership draws them from upper management. Champions also act as mentors to Black Belts.
  • Master Black Belts, identified by Champions, act as in-house coaches on Six Sigma. They devote all of their time to Six Sigma, assisting Champions and guiding Black Belts and Green Belts. In addition to statistical tasks, they ensure that Six Sigma is applied consistently across departments and job functions.