DCS organic farming 4

Highly impacted animal species

Earthworms

Earthworm population and diversity appears to have the most significant data out of all studies. Out of six studies comparing earthworm biodiversity to organic and conventional farming methods, all six suggested a preference for organic practices including a study at the pioneering Haughley farm in 1980/1981 that compared earthworm populations and soil properties after 40 years. Hole et al. (2005) summarized a study conducted by Brown (1999) and found nearly double the population and diversity when comparing farming methods.

Birds

Organic farms are said to be beneficial to birds while remaining economical. Bird species are one of the most prominent animal groups that benefit from organic farming methods. Many species rely on farmland for foraging, feeding, and migration phases. With such, bird populations often relate directly to the natural quality of farmland. The more natural diversity of organic farms provides better habitats to bird species, and is especially beneficial when the farmland is located within a migration zone. In 5 recent studies almost all bird species including locally declining species, both population and variation increased on organic farmland,. Making a switch from conventional farming methods to organic practices also seems to directly improve bird species in the area. While organic farming improves bird populations and diversity, species populations receive the largest boost when organic groups are varied within a landscape. Bird populations are increased further with optimal habitat for biodiversity, rather than organic alone, with systems such as Conservation Grade

Butterflies

A specific study done in the UK in 2006 found substantially more butterflies on organic farms versus standard farming methods except for two pest species. The study also observed higher populations in uncropped field margins compared with cropland edges regardless of farm practice.[2] Conversely, Weibull et al. (2000) found no significant differences in species diversity or population.

Spiders

Ten studies have been conducted involving spider species and abundance on farm systems. All but three of the studies indicated that there was a higher diversity of spider species on organic farms, in addition to populations of species. Two of the studies indicated higher species diversity, but statistically insignificant populations between organic and standard farming methods.

Soil Microbes

Out of 13 studies comparing bacteria and fungus communities between organic and standard farming, 8 of the studies showed heightened level of growth on organic farm systems. One study concluded that the use of “green” fertilizers and manures was the primary cause of higher bacterial levels on organic farms. On the other hand, nematode population/diversity depended on what their primary food intake was. Bacteria-feeding nematodes showed preference towards organic systems whereas fungus-feeding nematodes showed preference for standard farm systems. The heightened level of bacteria-feeding nematodes makes sense due to higher levels of bacteria in organic soils, but the fungus-feeding populations being higher on standard farms seems to contradict the data since more fungi are generally found on organic farms.

Beetles

According to Hole et al. (2005), beetle species are among the most commonly studied animal species on farming systems. Twelve studies have found a higher population and species richness of carabids on organic systems. The overall conclusion of significantly higher carabid population species and diversity is that organic farms have a higher level of weed species where they can thrive. Staphylinid populations and diversity have seemed to show no specific preference with some studies showing higher population and diversity, some with lower population and diversity, and one study showed no statistical significance between the organic and conventional farming systems.

Mammals

Two comparative studies have been conducted involving mammal populations and diversity among farm practices. A study done by Brown (1999) found that small mammal population density and diversity did not depend on farming practices, however overall activity was higher on organic farms. It was concluded that more food resources were available to small mammals on organic farms because of the reduction or lack of herbicides and pesticides. Another study conducted by Wickramasinghe et al. (2003) compared bat species and activity. Species activity and foraging were both more than double on organic farms compared to conventional farms. Species richness was also higher on organic farms, and 2 of the sixteen species sighted were found only on organic farms.